Measuring Student Learning, Engagement, and Accessibility for Neurodivergent Students in Advanced Cybersecurity Topics

Project Investigators: Harini Ramaprasad, Meera Sridhar University of North Carolina at Charlotte

 Funded by:

 NSF SaTC EDU grant # NSF-DGE1947295

 UNC Charlotte Scholarship of Teaching and Learning grant

2024 CAE in Cybersecurity Symposium April 2024

CYBERSECURITY EDUCATION IS IMPORTANT

- Big gap in cybersecurity workforce demand & supply
- Lack of diversity
 - Only ~4% of cybersecurity workers in US identify as Hispanic, 9% as Black, and 24% as women
- Diversity and inclusion are not just feel-good initiatives
 - Essential for protecting critical infrastructure
 - Leads to creative, varied-perspective solutions to challenging problems
- **Overarching goal**: Teach advanced cybersecurity topics in an inclusive, engaging manner
- E-SHIELD: Enhancing Security education in Hybrid mobile and IoT firmware through Inclusive, Engaging Learning moDules

Minorities and the Cybersecurity Skills Gap, Forbes Technology Council, Sept 2022

Courtesy: forbes.

E-SHIIELD PROJECT TEAM

OVERVIEW

Stack smashing - importance and challenges in teaching & learning

- Software security module
 - Guided learning activities Ο
 - Dynamic Interactive Stack Smashing Attack Visualization (DISSAV) Ο
- Our prior studies on software security module
 - Setup, deployment, findings Ο
- Our current study: Effectiveness of module for neurodivergent students
- urrent study: Effectiveness of module for neurourcesses. Objectives, research questions, study participants, data collection, evaluation Ο

STACK SMASHING

THE PROBLEM & MOTIVATION

- Stack-based buffer overflow attack
 - Buffer overflow attack: Attacker writes data to buffer that overflows buffer's capacity, overwriting adjacent memory locations
 - Common vulnerability in (legacy) C programs Ο
 - Overwrite return address to redirect program execution Ο
- Why is it important to teach stack smashing attacks?
 - Known to be some of the most dangerous types of vulnerabilities Ο
 - Allows remote code execution or privilege escalation Ο
 - Affect a wide range of IoT devices Ο
- mposium IP cameras, desktop conferencing IoT gadgets, Cosori Smart Air Fryer... Ο

STACK SMASHING

THE PROBLEM & MOTIVATION

Challenges in teaching stack smashing attacks

- Highly sophisticated attack
- Abstract and complex
- C is particularly difficult
- Requires vast background information
 - Parameter passing in C, how parameters are stored on the stack, process memory layout, many more concepts...

CONTRIBUTIONS

- Suite of guided learning activities
 - Warm-up resource: Strings in C
 - Activity I: Buffer Overflows in C
 - Activity II: Process memory layout
 - Activity III: Stack Smashing
 - Activity IV: Defenses
- Use Process Oriented Guided Inquiry Learning (POGIL) style
 - Students *explore* learning models that depict relevant information, then proceed to *invent* key concepts emerging from those models, and finally *apply* the concepts they invent to solve given problem
- First to develop POGIL-style activities for advanced cybersecurity topic such as stack smashing

WARM-UP RESOURCE

Provides students with prerequisite knowledge:

How C-style strings are created, used and stored

char str3

Example

Memory contents, starting from the beginning of the str 3 array:

Figure from activity that shows one way in which string can be created in C and how it is stored in memory

ACTIVITY I: BUFFER OVERFLOWS IN C

Students learn:

- How to create and run simple C programs with command-line arguments, variables, functions, and arrays
- Structure and use of C-style strings, with emphasis on the usage of unsafe string functions such as . strcpy() -Ommunit

Model 1: Command-line parameters

```
#include <stdio.h> /* needed for printf (console display)
  function */
int main (int argc, char* argv[]) {
  printf("Number of strings in argv : %d\n", argc);
  printf("List of strings in argv (one per line) :\n");
   for (unsigned int i = 0; i < argc; ++i) {</pre>
      printf("%s\n", argv[i]);
   return 0;
```

///*			
Execution command	Number of parameters passed to cmdInpar	argc	Number of elements in argv
./cmdlnpar	0	1	1
./cmdlnpar stranger things	2		
./cmdlnpar jon snow knows nothing	2		2
./cmdlnpar ready 1 2 and 3			6
./cmdlnpar "this is my parameter"			

ACTIVITY II: PROCESS MEMORY LAYOUT

Students learn:

Stack growth as

Stack Frames are added

- Purpose, relative positions, growth directions and limits of different segments within main memory of computer
- When and how stack frames are added to and removed from stack with respect to program execution
- Details of stack frame layout

DISSAV Dynamic Interactive Stack Smashing Attack Visualization

Program visualization tool for teaching stack smashing attacks

- Web-based application built with ReactJS
- DISSAV workflow (a simulated attack scenario):
 - Create a function (with a buffer overflow vulnerability) Ο
 - Construct a payload (to pass to the vulnerable function) Ο
 - Execute the program (Attempting the stack smashing attack) Ο
- DISSAV Accompanying active learning exercise to guide students through SILIM
 - Inserted after Guided learning Activity III (Stack Smashing) Ο

- Interactive and engaging
 - Use of colors, fonts, icons, buttons and more to improve student engagement Ο
 - Appeal to broader and more diverse student audience Ο
- Ability to customize attack scenario (within limits)
 - Provides guided, incremental steps for completing attack Ο
- Dynamic visualization
 - Displays current state of call stack during program execution Ο
 - Helps visualize memory addresses and contents of stack frames (abstract concept for students) 0 mposium
- Highlights relevant parts of program code during execution
- Allows students to customize vulnerable functions
 - Choose from list of (dummy) attacker actions Ο

DISSAV

PHASES: CREATE A FUNCTION | CONSTRUCT PAYLOAD | EXECUTE PROGRAM & VISUALIZE STACK

OUR PRIOR STUDIES

SETUP AND DEPLOYMENT

Survey to gauge student perception of DISSAV & guided learning activities

- Likert scale questions:
 - DISSAV: UI, learning, engagement Ο
 - Guided learning activities: Length, challenge, style, outcomes, engagement and team role usage 0
- Free response questions for additional feedback
- Demographic questions: age, gender, prior experience with C programming, stack smashing, program visualization tools

Deployment:

- Junior level undergraduate introductory cybersecurity course across multiple semesters

OUR PRIOR STUDIES

- User interface: positive
- Student learning:
 - Consistently relevant & helpful in learning targeted concepts
 - Need provide more learning resources for background concepts
 - Mostly relevant & useful, but improvement needed to tie it better to student interests & needs
- Student engagement:
 - Engaging in general, but not particularly exciting to specific groups
 - Not engrossing / immersive enough for students to feel they "lost track of time"
 - Solid resources that students would recommend to others

OUR PRIOR STUDIES FINDINGS: GUIDED LEARNING ACTIVITIES

- Structure and design of activities: positive responses
- Sufficiency of activities at teaching them the material: neutral reactions
- Whether the style of the activities were engaging: split
- Students younger than 25, with some prior experience with C \rightarrow better perceptions of activities Symposium OSium O

EFFECTIVENESS FOR NEURODIVERGENT STUDENTS

- Evaluate the effectiveness of our guided learning activities and DISSAV for neurodivergent students to learn about stack smashing in an effective, engaging, and accessible manner.
- Establish guidelines for the development and use of pedagogical strategies such as guide learning and program visualization to be inclusive of neurodivergent students, drawing from insights from our study.

EFFECTIVENESS FOR NEURODIVERGENT STUDENTS

- Do neurodivergent students think our guided learning activities help them learn about stack smashing?
- Do neurodivergent students think our guided learning activities are engaging?
- Do neurodivergent students experience challenges due to group work that is integral to guided learning activities?
- Do neurodivergent students find DISSAV useful, engaging, and accessible to learn about stack smashing?

EFFECTIVENESS FOR NEURODIVERGENT STUDENTS STUDY PARTICIPANTS

- **JNC Charlotte Cohort**
 - Students enrolled in junior-level Introduction to Information Security and Privacy course, in 0 Spring 2024 (enrollment: 50)
 - Will complete pre-test, stack smashing module, post-test as part of required coursework 0
 - Volunteering students will complete student experience survey (all), focus group / interview Munit Ο (neurodivergent)
- AccessComputing Cohort
 - NSF-funded project that focuses on increasing the participation of individuals with disabilities Ο in computing ; ~175 team members identify as autistic, having a brain injury, learning disability, SILIN or attention deficit
 - Volunteering students will complete Ο
 - pre-test, stack smashing module, post-test
 - student experience survey, focus group / interview

EFFECTIVENESS FOR NEURODIVERGENT STUDENTS DATA COLLECTION The main objective of an attacker in a "stack Learning outcomes smashing attack" is to overwrite the return address of a function to alter the program's Pre- and post-tests assessing student knowledge Ο control flow. True or False. Performance in guided learning activities Ο The content of the models presented in the Student experience survey activities was clear to me Likert scale questions about learning, engagement Ο accessibility Using the tool helped me gain confidence in reinforce the targeted concepts. **Demographic questions** Ο Were there examples, models, or activi Focus group / interview you found particularly helpful? Open-ended questions on student learning, Ο engagement, accessibility Did you encounter challenges while using the DISSAV tool? If so, how could we have designed it differently to make it easier for you?

EFFECTIVENESS FOR NEURODIVERGENT STUDENTS EVALUATION

Student Outcomes Data

- Compare student performance on matched pre- and post-tests 0
- 0
- Analyze distribution of student performance on guided learning style activities Determine whether there are significant differences in knowledge gain and/or performance for neurodivergent versus other students in the UNC Charlotte cohort Ο
- Student Experience Survey Data
 - 0
 - Use descriptive statistics to summarize Likert-scale survey data Determine whether there are significant differences in perceptions of neurodivergent and other students in the UNC Charlotte cohort 0
 - Use sentiment analysis for data collected from free-response survey questions. 0
- Student Focus Group / Interview Data
 - Qualitative data about the perceptions and experiences of neurodivergent students Use combination of deductive and inductive approaches to identify themes Ο
 - 0
- Expected outcomes
 - Data analysis results 0
 - Guidelines for pedagogical strategies such as guided learning and program visualization to be inclusive of 0 neurodivergent students

Osium

PRODUCTS

- Erik Akeyson, Harini Ramaprasad and Meera Sridhar. DISSAV: A Dynamic, Interactive Stack-Smashing Attack Visualization Tool. Journal of the Colloquium for Information Systems Security Education (CISSE), (9):1, March 2022. Best Paper Award.
- Harini Ramaprasad, Meera Sridhar, and Erik Akeyson. Interactive Program Visualization to Teach Stack Smashing: An Experience Report. Journal of the Colloquium for Information Systems Security Education (CISSE), (10):1, Winter 2023.
- Harini Ramaprasad, Meera Sridhar, Sushma I Dangeti, Soham Pradhan. Guided Learning and Interactive Visualization for Teaching & Learning Stack Smashing Attacks & Defenses: Experiences and Evaluation. In submission to Frontiers in Education (FIE), 2024.

Activity approved for classroom testing via POGIL Activity Clearinghouse:

Sium Ramaprasad, H. (2022). Process Memory Layout: Cybersecurity. POGIL Activity Clearinghouse, 3(4)

Activities submitted for classroom testing via POGIL Activity Clearinghouse:

- Activity 1: Buffer Overflows in C
- Activity 3: Stack Smashing
- Activity 4: Defenses

REFERENCES

- Moog, R. S., & Spencer, J. N. (2008). Process oriented guided inquiry learning (POGIL) (Vol. 994, pp. 1-13). Washington, DC: American Chemical Society.
- Ben Allen, Minorities And The Cybersecurity Skills Gap, Forbes, 2022.
- Mohanty, A., Obaidat, I., Yilmaz, F., & Sridhar, M. (2018). Control-hijacking vulnerabilities in IoT firmware: A brief survey. In The 1st International Workshop on Security and Privacy for the Internet-of-Things (IoTSec'18).
- Akeyson, E., Ramaprasad, H., & Sridhar, M. (2022, March). DISSAV: A dynamic, interactive stack-smashing attack visualization tool. In Journal of The Colloquium for Information Systems Security Education (Vol. 9, No. 1, pp. 8-8).
- Ramaprasad, H., Sridhar, M., & Akeyson, E. (2023, March). Interactive Program Visualization to Teach Stack Smashing: An Experience Report. In Journal of The Colloquium for Information Systems Security Education (Vol. 10, No. 1, pp. 8-8).

