Fall 2021 CAE Tech Talk November 18, 2021

Securing Cyber-Physical Systems by Platform Reboot

MONOWAR HASAN

Assistant Professor, School of Computing Wichita State University, Wichita, KS monowar.hasan@wichita.edu

WICHITA STATE UNIVERSITY College of Engineering School of Computing

About Me

- Assistant Professor
 - School of Computing, Wichita State University (WSU)
 - Cyber-Physical Systems Security Research Lab (CPS2RL) [<u>https://cps2rl.github.io</u>]
 - Current members: 3 PhD, 2 Undergraduate
 - Past: UIUC (PhD, 2020), UM (MSc, 2015)
- Research: Systems, Security, Networking
 - Security for real-time, IoT, and cyber-physical systems
 - Resilient real-time networks using SDNs
 - Security and resource management for vehicular communication networks

Today's Talk Security for Cyber-Physical Systems

Cyber-Physical Systems (CPS)

CYBER

Software, Control Algorithms, Code

Networking, Communication

Microcontrollers, ECU, PLC

Sensors

Actuators

Plant

Reboot-based Recovery | CAE Tech Talk

Attack Resilient CPS Platforms

- o Security issues \rightarrow leads to safety issues
 - Difficult to ensure system won't be compromised
- o Goal:
 - Provide guaranteed safety \rightarrow under attack
- o Proposed idea:
 - Proactive mechanism \rightarrow prevents attack from progressing

The Rest of Today's Talk

ReSecure [IoT'18, ICCPS'18]

Preserving Physical Safety under Cyber Attacks

[IoT'18] F. Abdi, C. Chen, M. Hasan, S. Liu, S. Mohan and M. Caccamo, "Preserving Physical Safety Under Cyber Attacks," iEEE Internet of Things Journal, Aug. 2019.

[ICCPS'18] F. Abdi, C. Chen, M. Hasan, S. Liu, S. Mohan and M. Caccamo, "Guaranteed Physical Security with Restart-Based Design for Cyber-Physical Systems," ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), 2018.

Our Approach: ReSecure [ICCPS'18]

- O Restart the system once a while to reset any attack progress
- o Employ a Safety Controller (SC) and a Root-of-Trust (RoT) module

ReSecure: Design

o Host platform

- Untrusted controller
- Safety controller
- o Root-of-Trust
 - Enforces restart

WICHITA STATE

CPS States

- O Admissible States S
 - States that do not violate any of the operational constraints of the physical plant
 - Safety invariant: system must always remain inside admissible states: $\forall t: x(t) \in S$

CPS States

- O Admissible States S
 - States that do not violate any of the operational constraints of the physical plant
 - Safety invariant: system must always remain inside admissible states: $\forall t: x(t) \in S$
- O Recoverable States R
 - Defined with regards to a given safety controller (SC)
 - A subset of admissible states $(R \subseteq S)$ such that
 - if the given SC starts controlling system from $x \in R$, all future states will remain admissible

WICHITA STATE UNIVERSITY

Determine Recoverable States Reachability Analysis

o True Recoverable States:

• All the states from which safety controller can stabilize the plant within α time.

 $\Gamma_{\alpha} = \{ x \mid$

 $Reach_{\leq \alpha}(x, SC) \subseteq S \&$

During recovering, the system should remain in admissible states.

 $Reach_{=\alpha}(x,SC) \subseteq R$

The destination should be a recoverable state.

Determine Next Restart Time

o From a given state:

• Calculate the shortest time, $\gamma(x)$, to an unsafe state

Determine Next Restart Time

O From a given state:

• Calculate the shortest time, $\gamma(x)$, to an unsafe state

ReSecure: Workflow

- O The system enters a Secure Execution Interval (SEI) during booting
 - The software is uncompromised
 - Access to RoT is enabled during SEI only
- o Execution steps:
 - 1. Boot up (software is loaded)
 - 2. Enter SEI
 - 3. Run safety controller
 - 4. Check the system's state
 - 5. Compute next SEI time $\gamma(x)$
 - 6. Configure the restart timer on the RoT module (then RoT module closes I²C)
 - 7. Exit SEI, jump to user's application (the untrusted controller)

Restart-based Recovery

Remarks

- Restarts are costly!
 - Platform specific
 - large restart time \rightarrow not suitable for highly dynamic systems
- o Require custom hardware
 - Root-of-Trust

Background - ARM TrustZone

 $\begin{array}{c} \text{Orm} \\ \text{TRUSTZONE} \end{array} \rightarrow \text{isolates trusted software and data} \end{array}$

Untrusted	Trusted
-----------	---------

19 1

Implementation & Case-Study

- o Testbed:
 - 3 DoF Helicopter
- o Host Platform:
 - Zedboard (Xilinx's Zynq-7000)
 - FreeRTOS
 - ARM TrustZone (LTZVisor hypervisor)
- o Root-of-Trust:
 - MSP430G2452 micro-controller
 - 160-bit internal timer

Safety Goal: not to hit the surface of table

Results

DoS Attack \rightarrow turn off motors Ο

Output Voltage

(Volts)

Extreme case

- Green \rightarrow Safety controller Ο
- $Red \rightarrow Untrusted controller$ Ο
- White \rightarrow Reboot Ο

Ongoing Work

 $\circ \quad \underline{\text{Proactive}} \rightarrow \text{Application-level reboot}$

Challenges:

Ongoing Work

○ Proactive & Reactive → Application & System-level reboot

WICHITA STATE UNIVERSITY

WICHITA STATE UNIVERSITY

Remarks

- O Threats to critical systems are increasing
 - Requires layered defense mechanisms
- O ReSecure: one way to secure critical CPS \rightarrow active restart mechanism
 - Ensures physical safety
 - Prevents the attacks from progressing

Questions?

https://monowarhasan.info/ monowar.hasan@wichita.edu