Bridging the Gap: Developing Innovative Minds Early On for Cybersecurity

♦ Mark Thompson♦ Ram Dantu

2

The Space Race

- The launch of Sputnik I into space on October 4, 1957, by the Soviet Union meant one thing:
 - The U.S. had fallen behind the Russians
 - National security and national pride was on the line!
- A positive effect on math and science education
 - The federal government for the first time made a major investment in K-12 curriculum development
 - Goal of NSF financed projects was to teach basic principles and have students apply their knowledge by *doing*
 - The race to the moon!
 - But after Neil Armstrong won the race in 1969, public support for this effort returned to normal levels

Motivation

- So what does all this have to do with what we're talking about today?
 - We are at the same *precipice* today that we were back then, but instead of...
 - The Space Race
 Cyber Warfare
 - The Soviet Union Nation-States
 - The good news is that computer science and related programs with a special interest in cybersecurity are experiencing tremendous growth
 - The bad news: forecastors are predicting a catastrophic shortage in workers to fill open positions in cybersecurity by 2020 and beyond

Motivation

WE ARE HIRING

- So why the disconnect?
 - If there's so much interest, why aren't we developing enough qualified candidates?
 - Job forecasts have been unable to keep pace with the dramatic rise in cybercrime
 - One report predicts there will 3.5M unfilled jobs in cybersecurity by 2021 (Cybersecurity Jobs Report 2018-2021)
- We hypothesize that by the time students enroll in a higher education institution, it may already be too late
 - Lack of preparation many students are unable to handle the complexity, creativity requirements, and continually changing environment in cybersecurity

Freshman One-Year Retention Rate

Core Competencies and Skills

- Critical Thinking
 - Analysis and evaluation leading to understanding and decision-making
- Effective Communication
 - Listening and translating, sending and receiving messages
- Creativity (and Innovation)
 - Conception to implementation
- Problem Solving (through Negotiation and Collaboration)
 - Understanding the situation
 - Exchange of information, ideas, and perspectives
- Self-Awareness (and Self-Efficacy)
 - Conscious knowledge of own strengths and weaknesses
- Research
 - Try new things, dig deeper

Thinking Outside of the Textbook

- Traditional approaches, such as the lecture model, that emphasize
 - Rote learning through memorization and regurgitation
 - Routine application of procedures and practice
 will not develop and enhance the needed skills
- To develop higher-order skills required in cybersecurity, students must
 - Engage in open, active learning using meaningful learning activities that are valuable and relevant
 - Have individual and collaborative real-world experiences that will sustain student engagement

Project-Based Learning

- Collaborative research projects and field-based activities targets personalized, collaborative, and informal, or selfdirected, learning
 - Balances theory and practice
 - Allows students to move from a passive to an active learning experience that is engaging and promotes further learning
 - Can include service learning within the local community

A Culture of Innovation

- Innovation has three components:
 - 1. An idea,
 - 2. Its implementation, and
 - 3. The outcome (execution) that produces a change
- Innovation is not just for the top 10% of the class
 - Need to address and motivate the bottom 30% 50%
- Innovation must become the collective responsibility of the community
 - Needs a nurturing environment to flourish
 - Difficult because disrupts the established routine and pushes implementers out of their comfort zone
 - Without community buy-in, efforts will fail

Conclusion

- Goal is to create self-motivated students who have the confidence in creativity and innovation through intelligent risk taking, collaboration, and opportunity recognition
 - Involves teaching and motivating all students to work in unscripted and unknown environments
 - Increasing the number of computer science graduates depends on getting kids interested at a younger age
 - Important for overcoming stereotypes as well as confidence and identity issues
 - Increasing the number of K-12 schools teaching innovation through computer science

Conclusion (cont'd)

- Teachers must be taught to teach well
 - How can a science project be converted into innovation?
 - "Train the Trainer" approach to show teachers how to show the path to innovation
 - Able to take up a risky hypothesis
 - Not afraid of getting negative results
 - Innovate in every aspect of life and study
 - Make innovation contagious, make it a culture