
Workerounds - Categorizing Service Worker Attacks and Mitigations
Team Students: Karthika Subramani (UGA), Jordan Jueckstock (NCSU) | Professors: Roberto Perdisci (UGA, GATech), Alexandros Kaprevalos (NCSU)

Introduction
Service Workers (SWs) are a powerful feature at the core of Progressive
Web Apps that can continue to function when a user’s device is offline
and have access to device sensors and capabilities previously accessible
only by native applications. Researchers have found ways in which SWs
may be abused to achieve different malicious purposes. In this project,
we reproduce and analyze known attack vectors related to SWs and
explore new abuse paths that have not previously been considered. We
systematize the attacks into different categories, discuss unmitigated
open SW security problems and propose dynamic defenses to further
improve SW security.

Problem Statement
Because SWs are a powerful feature, browser developers are mindful of
potential security risks that come with them and have implemented
certain security policies to limit SW abuse. However, researchers have
proven that SWs can still be abused to build a web-based botnet, launch
DDoS attacks, cryptomining, XSS and side-channel attacks and Social
Engineering attacks such as phishing and malvertising. To successfully
defend against existing unmitigated attacks and future attacks, we
systematically categorize known and new attack vectors and propose
defenses to improve SW security.

Service Worker & its Policies
In practice, a SW is a JavaScript Worker script with the following
high-level properties: (i) it is installed by a web application (ii) after
installation, the SW can act as a proxy for network requests issued by its
web application (iii) it is an event-driven process that runs in the
background and can be activated by events such as push notifications or
fetch requests even if the web application is not active in the browser.
An overview of SW life cycle

Browsers enforce the following major policies for SW security:

1. Only secure origins (HTTPS sites) can register SWs.
2. The JavaScript file containing SW code must be hosted under the

same origin as the website that registers the SW.
3. A SW should be terminated if the SW code has been idle for more than

30 seconds or if an event takes more than 5 minutes to process.
4. Push notifications should trigger a user-visible notification if the SW

does not explicitly issue one.
5. The use of some APIs (e.g., Periodic Background Sync) should be

restricted by permissions that must be granted by the browser (not
necessarily via a direct UI request to the user).

SW Abuse Categories
First, we group the attacks discovered via our literature review, as well as new attacks found, into different categories
based on the root SW features that make them possible. The chart below displays the SW abuse categories. The attacks
under each category and the corresponding APIs they exploit. Further, it also contains detailed information on the major
browser versions that are affected by each attacks and the versions the attacks were mitigated. As can be seen, despite
the existing SW security policies, a number of attacks were still possible and are largely unmitigated. Further, we create a
testbed of new attacks and known attacks by reproducing them that can be used to check if a browser is vulnerable to
these attacks.

Existing Mitigations

• Termination Delay Limits: This was introduced to stop
the WebBot attack and prevents SWs from delaying their
own termination on self-update.

• Notification UI changes: In lieu of web notifications
abuse, browsers changed the UI for requesting
notifications making it less intrusive.

• Default Notifications : Some browsers display
notifications with default message in case the SW was
activated in the background and no notification was
displayed to the use explicitly.

• Event Signaling : In order to prevent side-channel
attacks that leverage the invocation of page events, more
standard approach was used.

• Site Isolation : This is to ensure that 3rd party iframes
have limited access to the main frame’s data with
respect to SWs.

SW Open Problems
Based on our study of SW and its abuse, we highlight open problems that are yet to
be addressed and propose mitigations that could be incorporated in browsers.
• Limiting SW Execution: One of the major problems is to limit SWs from running

in the background for longer duration while its web application is inactive.
Therefore, we propose to dynamically monitor SWs and their usage and apply
heuristics based on real-time measurements to terminate their abuse
automatically.

• Limiting Malicious SW Permissions: Adversaries could use the recommended
practice of ‘Double Permission’ and Social Engineering approaches to render
‘Quiet Notification’ futile. Therefore, we propose that notifications are
monitored by browsers in real-time and alert the users or browsers of their
abuse to warrant further actions.

• Limiting 3rd Party Code: Considering that most websites leverage 3rd party
services and grant them access to their SWs unknowing of the extent of their
access, additional browser policies need to be mandated to make developers
aware of the danger of including 3rd party SW scripts without any restrictions.

SW Behavior in-the-wild
We instrument Chromium browser to collect and record all SW related data. Then,
we use this instrumented browser to crawl top websites as per Alexa ranking to
monitor their behavior and arrive at reasonable thresholds that can be used to
detect and limit malicious SW behavior in real-time. The table below shows a
number of measurement for 90% of the websites in different bands of ranking.

Continuous
Execution

WebBot

PushExe

Stealthier PushExe [New]

Side

Channel

Offline Onload

Performance Timing1

Performance Timing2

Hijacking

XSS

Extension Hijack [New]

Library Hijack [New]

IndexDB Hijack

Push API &
Notifications

Abuse

Malvertising [New]

Phishing

Stalkerware

To understand when the attacks were discovered and if/when any mitigation was employed, we create a timeline of the
attack discovery and mitigation in the shown figure. Although certain additional mitigations were introduced to curb
specific issues, they do not address the source of the issue and still leads to more open problems as discussed in the
next section. In addition to the browser policies, the following mitigations were implemented

#SW Origins above threshold value

SW Browser Policies
To demonstrate that implementing the new policies proposed is possible with
reasonable effort, we implement a proof-of-concept in the Chromium browser of
some of those policies. For example, we successfully monitor SW execution lifetime
and generate alerts when it exceeds a certain threshold.

Legend: (●) first attack impact; (○) fix released; (◐) partial fix released; (⛝) no fix released; (☑) possible if notifications are supported; (⚝) attack not possible

National Science Foundation

Acknowledgements
This material is based in part upon work supported by the National Science Foundation (NSF)
under grants No. CNS-2126641 and CNS-2047260.

References
• P. Papadopoulos, P. Ilia, M. Polychronakis, E. Markatos, S. Ioannidis, and G. Vasiliadis, “Master of web puppets: Abusing web browsers for persistent and stealthy

computation,” ArXiv, vol. abs/1810.00464, 2019
• J. Lee, H. Kim, J. Park, I. Shin, and S. Son, “Pride and prejudice in progressive web apps: Abusing native app-like features in web
• applications,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018.
• P. Chinprutthiwong, R. Vardhan, G. Yang, and G. Gu, “Security study of service worker cross-site scripting.” in Annual Computer Security Applications Conference,

ser. ACSAC ’20. New York, NY, USA: Association for Computing Machinery, 2020.
• S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper agents: Misusing service workers for privacy leakage,” in Network and Distributed System Security

Symposium (NDSS), 2021
• K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. H. Lee, and R. Perdisci, “When push comes to ads: Measuring the rise of (malicious) push advertising,” in

Proceedings of the ACM Internet Measurement Conference, ser. IMC ’20.
• Chinprutthiwong, R. Vardhan, G. Yang, Y. Zhang, and G. Gu, “The service worker hiding in your browser: The next web attack target?” in 24th International

Symposium on Research in Attacks, Intrusions and Defenses, ser. RAID ’21.
• Watanabe, E. Shioji, M. Akiyama, and T. Mori, “Melting pot of origins: Compromising the intermediary web services that rehost websites,” in NDSS, 2020.

This work will be published in Euro S&P,2022. Source Code : https://github.com/karthikaS03/SW_Sec_Project

