DefWeb: Defending User Privacy against Cache-based Website Fingerprinting Attacks with Intelligent Noise Injection

Seonghun Son, Debopriya Roy Dipta, Berk Gulmezoglu

Microarchitecture and Artificial Intelligence Security (MAIS) Laboratory, Iowa State University

Introduction

❖ Motivation:

Issue

- Cache-based Website Fingerprinting (WF) attacks violate user privacy by exploiting shared CPU resources, even on Incognito or Tor browsers.

Why it matters?

- Existing defense techniques either fail to fully obfuscate data or cause significant performance overhead.
- Precedent work
- Oren et al. (2015) [1]: Cache attacks in JavaScript environments with an attack accuracy of 78.4% and mitigation of **76.2%**
- Shusterman et al. (2019) [2]: Cache occupancy based WF attack, achieving 95.7% accuracy and mitigated to **62.0%** through noise injection.
- Cook et al. (2022) [3]: Loop-counting based WF attack with an accuracy of 95.7%, which was reduced to **46.2%** using randomized timers.

Web User

Attacker

Website Fingerprint (WF)

WF attack with Deep Learning (DL)

Proposed Solution:

Solution

A novel defense mechanism that injects intelligent noise using a generative learning model to protect user privacy during web browsing activity.

Objective

Decrease the attacker Machine Learning(ML) model's accuracy with minimal performance overhead.

Method

Overview

- DefWeb employs a dynamic noise injection (noise template) utilizing a generative <u>learning deep learning model</u> (Variational Autoencoder).
- Online phase: Training the defense mechanism by collecting WF data and generating noise templates
- **Offline phase**: Applying the generated noise in real-time during website browsing to obfuscate the fingerprints and protect user privacy

❖ Data Collection

Process: Collect website fingerprints via the cache occupancy channel [2] and

Alexa's Top 150 website list

Latent Space Representation Using Variational Autoencoder (VAE)

- High-dimensional WF datasets to a lower-dimensional latent space utilizing VAE
- **Objective**: Compress meaningful features and separate WF into clusters in the latent space

Noise Template Creation

- Generate minimal noise templates manipulate in the latent space
- **Process**: Calculate the distance between clusters in the latent space and generate noisy WF datasets to obfuscate the WF

Simulation Noise Template Injection

Inject simulation noise created from VAE algorithm

Practical Noise Injection utilizing Self-Modifying Code (SMC)

- Inject practical noise in microarchitecture during website rendering
- Process:
- Misalignment
- Segmentation into Dynamic Noise Block from Practical Noise Template
- Look-up table creation
- Practical noise injection in Intel TigerLake microarchitecture

Results

Accuracy Degradation

- The classification accuracy for 100 websites drops to 28.8%, 29.7%, and 5.2% accuracy for Chrome, Firefox, and Tor.
- The classification accuracy for 150 websites drops to 24%

Attack	Cache- Sweep	Interrupt Injection	DefWeb	
			Chrome & Firefox	Tor
Loop-Counting Attack[4]	x1.03	x1.42	x3.32	x9.2
Sweep-Counting [32]	x1.03	x1.54	x3.93	X9.Z

WF attack accuracy degradation

Performance Overhead

- Performance overhead tool WebAPI and *Selenium* library to measure rendering time.
- It is a better performance tool compared with Benchmarks since we directly check the overhead in a web environment,

Performance overhead

Conclusion

Overhead

❖ Future work

- SMC creation in the browser environment can be used
- The transferability of *DefWeb* can be investigated

Conclusion

- DefWeb demonstrates that intelligent noise injection can decrease the attacker Deep learning model's accuracy significantly compared to other method.
- The performance overhead introduced by *DefWeb* is less than other techniques.

References

[1] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and [2] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. 2019. Robust website fingerprinting through the cache occupancy channel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 639–656. [3] JackCook, Jules Drean, Jonathan Behrens, and Mengjia Yan. 2022. There's always a bigger fish: a clarifying analysis of a machine-

