
UntrustIDE
Exploiting
Weaknesses in
VS Code Extensions
Elizabeth Lin, Igibek Koishybayev,
Trevor Dunlap, William Enck,
and Alexandros Kapravelos
North Carolina State University
Visual Studio Code is the most popular IDE for developers.
It’s marketplace offers more than 50 thousand extensions that
allow users to add functionality to the IDE.
In this study, we explore vulnerabilities in VS Code extensions
through taint analysis.

Threat Model
In our threat model, VS Code users and VS Code extension
developers are trusted. The goal of the adversary is to achieve
code execution.

Analysis
The goal of this study is to systematically identify code injection
and file integrity vulnerabilities in VS Code extensions. We build
CodeQL queries to identify dangerous data flows that could lead
to attacks.

Do you use VS Code?

We show how VS Code
extensions could be exploited by a
third party to achieve code injection.

Exploitation of a VS Code extension
can be a single line of code in a git
repo you download.

Weverified vulnerabilitieswith proof
of concepts for 21 extensions,
amounting to more than
6 million installations.

Scan to access
our repository with the queries at
https://github.com/s3c2/UntrustIDE

Distinguished Paper Award
@ NDSS Symposium

We show the impact of the Node.js ecosystem on
VS Code extensions.
We discovered 13,655 VS Code extensions where each one has
more than 100 npm transitive dependencies.
Furthermore, 9,710 extensions depend on vulnerable npm
packages with a critical-level advisory.

critical high moderate low none

0

0.2

0.4

0.6

0.8

1

1.2

·104

9
,7
1
0

2
,0
2
1

1
2
7

4
6

3
,2
9
1

3
,8
7
2

3
,6
0
2

2
5
4

2
0
4

4
,5
8
5

advisory level

#extensions installs (100K)

Our tool identified 716 dangerous data flows.
Data read from VS Code workspace settings and files are the
most common source of code injection vulnerabilities in VSCode
extensions.

Source Sink
Number of extensions
with calls to both the
source and the sink

Filtered
Flows PoCs

workspace
settings

shell 2213 389 7
eval 192 12 6

file write 1847 24 0

file read
shell 1718 75 4
eval 397 34 4

file write 2847 150 0

network
response

shell 174 0 0
eval 122 1 0

file write 259 25 0

web server
shell 151 3 0
eval 64 0 0

file write 146 3 1

Disclosure
For extensions with verified PoCs, we notified extension
developers of the vulnerabilities. We also contacted the GitHub
security team of results of our research.

Acknowledgements
This material is based upon work supported by the National Sci-
ence Foundation Grant No. 2207008. Any opinions expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.


