
Systemic Risk & Vulnerability Analysis of Multi-Cloud National Cyberseci Environments

Program Name: INSuRE+(2) 2021

.giv

sissippi State University, Roomoster Technical Directors: National Security Agency Oquium Teams: Mississippi State University, Rochester Institute of Technology

October 2022 - September 2023

enda Provention Problem Motivation The Value of Value Industry Moderne
Modeling Framework
Risk Analysis & Explanation
Hook Implementation
Seportunities

introduction

Problem Statement: Multi-Cloud application deployment has caused highly fragmented approach toward security, leading to a constant rise of new attack vectors and potential vulnerabilities.

Project Phases:

- 1) Systemic Risk & Vulnerability Analysis of Multi-cloud Environments
- 2) Identify Novel Attacks Patterns & Risk Mitigation in Multi-cloud Environments

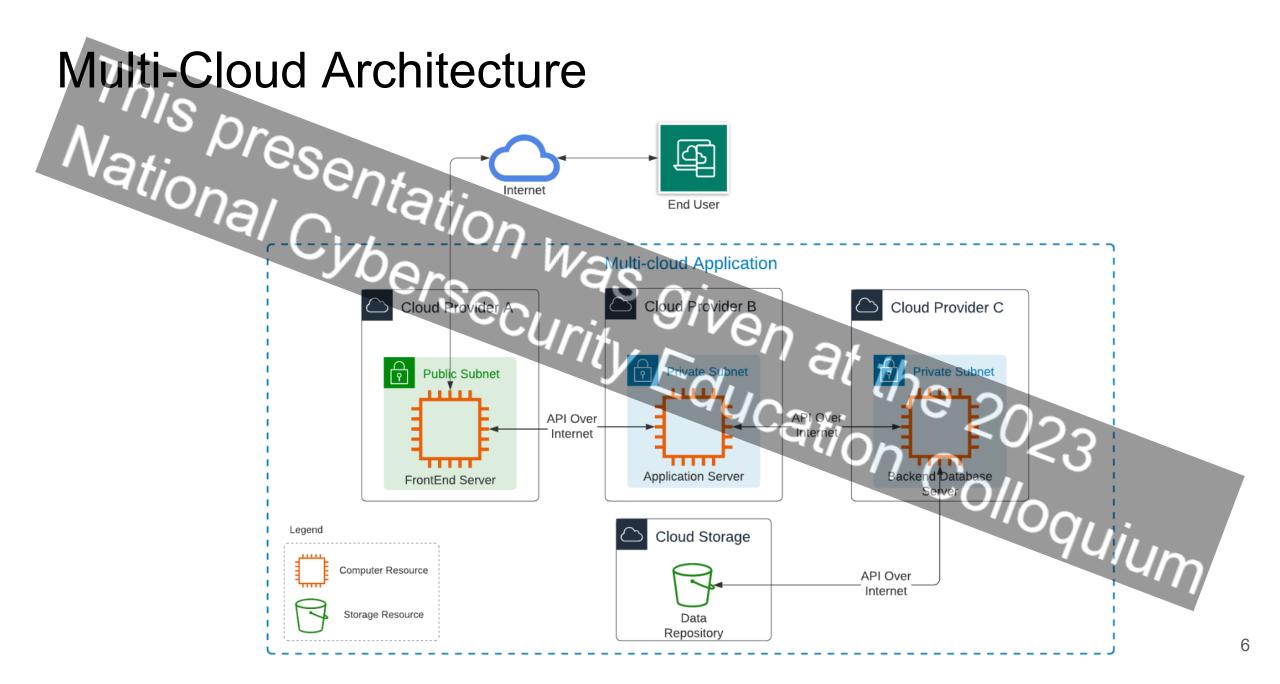
at

3) Develop & Evaluate Defensive Strategies to Secure Multi-cloud Environments

Phase 1 - Systemic Risk & Vulnerability Analysis of **Multi-cloud Environments**

Architecture definition

3-tier mutli-cloud architecture


given at the 20 Identify industry for modeling and analysis

Attack vector identification

Define Risk Analysis Methodology

STRIDE & DREAD to be used in conjunction with each other for full scoped UIUM analysis

QUCall

Healthcare Industry Modeling and Analysis

Risk assessment begins with Business Impact Analysis (BIA)

- BIA requires organizational operations to determine impact
- Enables defining basis of value of data
- BIA drives organizational risk analysis
- Defined architecture found extensively in healthcare industry
 - Either through internal development or acquisition, 90% of healthcare organizations plan on using multiple cloud service providers¹

¹ https://www.hitinfrastructure.com/features/pros-cons-and-strategies-for-implementing-healthcare-multicloud/

Attack Vector Categories

Identifying attack vectors that are unique to multi-cloud application deployments. ntation was given at the 2023

STRIDE use in Risk Analysis and Mitigation

STRIDE Threat Modeling Methodology

Objective - Identify, categorize, and analyze attacks into 6 types of threats: Spoofing, Tampering, Repudiation, Information disclosure (privacy breach or data leak), Denial of service, Elevation of privilege

Benefits - Proactive exercise in identifying threats and developing mitigations

Selection of Methodology - Used in all scenarios of threat modeling and risk analysis; one of the most commonly used threat modeling framework

DREAD Methodology

DREAD Risk Assessment Methodology

5<u>8</u>,

Objective - Quantitatively assess the severity of a cyberthreat using a scaled rating system that assigns numerical values to risk categories

Benefits – Very customizable methodology requiring extensive cybersecurity experience to ensure accurate analysis

Selection of Methodology - Focuses on impact and operability

ase 2 - Perform risk & vulnerability analysis

Risk analysis

Application of STRIDE and DREAD to threat vectors identified in Phase 1 **Risk mitigation**

Ilizing MITRE A model of the sign simulation environment. Cloud providers and possible applications Cation Colloguium Research and design simulation environment

Architecture Threat Risk Analysis

Risk Score calculated from DREAD model:

avg_damage = (Legal + Reputation + Productivity)/3

threat_probability = (Reproducibility, Exploitability, Affected Users, Discoverability)

3

DREAD Risk Score = (avg_damage) + Σ threat_attributes

Overall Threat Rating from DREAD Risk Score

- **Critical (40–50):** Critical vulnerability; address immediately.
- High (25–39): Severe vulnerability; consider for review and resolution soon.
- Medium (11–24): Moderate risk; review after addressing severe and critical risks.
- Low (1–10): Low risk to infrastructure and data.

Colloquium

High Risk Attack Vectors – Risk Analysis Results

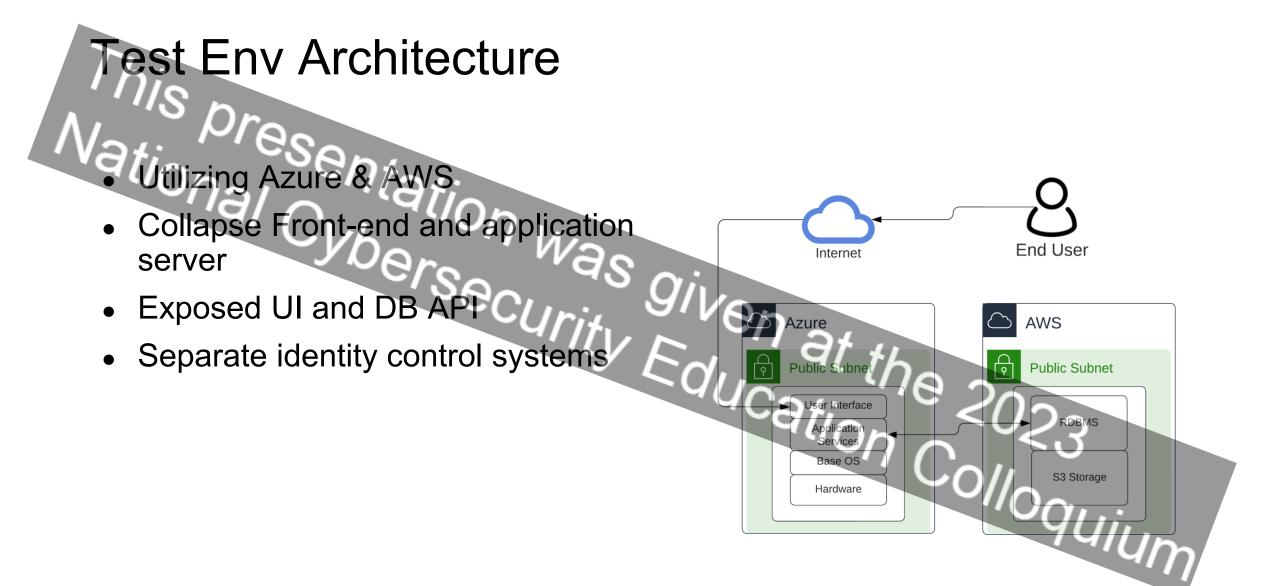
NI Pro-		Damage			Threat Attributes				
Vat: ' ' CSA			Legal	Reputation	Productivity				
Description of Threat	STRIDE Framework Category	Total Risk Score	Damage	Damage	Damage	Reproducabilit	Exploitability	Affected Users	Discoverability
Architecture: CVEs	ALL	44.00		9	<u>9</u>	9		10	<u>9</u>
Architecture: DoS attacks	Denial of Service	42.67	0	10	10	8	8	10	10
Automation : Data poisoning	Tampering with Data	34.33	0	4	6	10	10	8	3
Authentication : Man-in-the-Middle	Information Disclosure	32.67	S_{0}	9	5	7	9	10	2
API : Malformed packets	Denial of Service	32.00	^o _Q	10-	9	8	7	3	9
Architecture: Differing Encryption		Iriz.		v 8	h				
Offerings and Capabilities	Information Disclosure	30.33	/ 0 >>	6	72	+ 17	8	4	7
Authentication : Substitution attack	Denial of Service	29.33		∕∿	<u> </u>		10	2	2
API : Privilege Elevation	Elevation of Privilege	28.00	0	91(* ₈ /6	200	3	2
Automation : Dynamic changes to					911		~ 0	ノつ	
config causing inconsistency	Denial of Service	27.33	0	5	8		8	• U	3
Difference in Management: Auto-							\sim		
Scaling	Denial of Service	25.67	0	8	9	6	5/0	7	2
Authentication : Session hijacking	Spoofing Identity	25.67	4	6	4	7	8	UI I	5
Architecture: VPN Infiltration	Information Disclosure	25.33	0	8	5	6	9	2-1	Urh

High Risk Attack Vectors – Countermeasures and mitigations

Description of Threat	STRIDE Framework Category	Total Risk Score	Countermeasures	MITRE ATT&CK Mitigation
""Unar	'lati		Patch Management - System	
Architecture: CVEs / C/		44.00	Hardening	Patch
Architecture: DoS attacks	Denial of Service	42.67	WAF w/DDoS mitigation	Filter network traffic
y	$D_{\Delta n}$ '	/ลุ่	ICAM - Data Encryption - Secrets	
Automation : Data poisoning	Tampering with Data	34.33	Management	Filter network traffic, IPS
Authentication : Man-in-the-Middle	Information Disclosure	32.67	Secrets Management - DNSsec	Static network config
API : Malformed packets	Denial of Service	32.00	API security & encryption	Monitoring
Architecture: Differing Encryption			ITIL - Change Management -	
Offerings and Capabilities	Information Disclosure	30.33	Secrets Management	N/A
Authentication : Substitution attack	Denial of Service	29.33	Secure Block-cypher - timestamp	Audit, PAM, Cert Mgmt
			"Cati-	Monitoring, Audit GPO, PAM,
API : Privilege Elevation	Elevation of Privilege	28.00	PAM - least privilege	User Acct mgmt
Automation : Dynamic changes to			SOAR Configuration Managemen	
config causing inconsistency	Denial of Service	27.33	- ITIL	
Difference in Management: Auto-				~ 000
Scaling	Denial of Service	25.67	ITIL - Event Management	N/A YUII.
			TLS encryption on all sessions &	MFA, delete persistent
Authentication : Session hijacking	Spoofing Identity	25.67	MFA	cookies
			ICAM-MFA, Network	
Architecture: VPN Infiltration	Information Disclosure	25.33	segmentation	Network segmentation, MFA

Phase 3 - Develop & Evaluate Defensive Strategies to **Secure Multi-cloud Environments**

test environme


Define scoped attack methodologies

Authentication

Execute attack

Implement mitigation

Security Education Colloquium Retest attack identifying attack hinderances

Attack Execution on Authentication

- **Privilege Escalation**
 - Gain illegal/illicit access to a system through the elevation of user privilege about the Ο assign authorization level. This can be obtained through the exploitation of a system bug, misconfiguration, or inadequate access controls. enat

the

- Session Highjacking
 - Attackers use session cookies that have been stolen from a user's computer to Ο impersonate the session/user gaining access to protected data and systems. olloquium

Final Conclusions

 Multi-cloud deployments of applications continues to grow and a source of vulnerability

a

- Vulnerabilities in multi-cloud is similar to single cloud with a few exceptions
 - Multi-cloud adds **COMPLEXITY** to the security
 - Security PRIORITIES can change in multi-cloud because of unique exposed vulnerabilities

Future Opportunities

Multi-cloud security direction and research opportunities

- Recurring mitigation across the attack vectors
 - Change management
 - Enabling coordination of configuration and changes
 - Centralized management
 - Further research
 - Unified management of multi-cloud configuration
 - Automated mitigation implementation across cloud providers

oquium

